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Abstract

Gaussian approximating functions are used for the solution of the volume integral equation of thermo- and electro-

statics for a medium with isolated inhomogeneous inclusions. These functions essentially simplify the construction of

the final matrix of the system of linear algebraic equations to which the problem is reduced after the discretization. The

method is developed for the solution of 2D and 3D problems and the numerical results are compared with the exact

solutions of the problems for spherically layered inclusions. The so-called Edge Gaussian approximating functions are

proposed for the improvement of the numerical solution near the borders of the inclusions.
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1. Introduction

A class of composites that consist of a homogeneous matrix and a set of isolated inclusions (matrix

composites) is widely used in a variety of applications. Calculation of physical fields in such composites is

an important problem of the theory of inhomogeneous media. When a medium with an inhomogeneous

inclusion of complex geometry is subjected to an arbitrary external field, the physical fields in such a

medium may only be numerically calculated. The finite element method is not useful in this case because the

matrix (background medium) occupies a much larger region than the inclusions. It is shown to be more

appropriate to reduce the problem to the solution of the volume integral equations for the fields inside
inclusions [1] and then to use numerical means of solving these equations.

The conventional numerical solutions of the volume integral equations are based on the following

procedure. The region of integration is divided into a finite number of subregions and unknown functions
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(i.e., the components of the fields inside the inclusion) are approximated by standard (typically polynomial

or spline) functions in every subregion (see, e.g. [2]). After applying the method of moments or the col-

location method, the problem is reduced to the solution of a finite system of linear algebraic equations for
the coefficients of the approximation. The components of the matrix of this system are integrals over the

subregions. For problems of thermo- and electro-statics, these integrals are singular, and the complexity of

their calculations depends on the type of approximating functions utilized and the geometry of the sub-

regions. If standard approximating functions are used, a great portion of the computer time is spent in

calculating these integrals.

In this study, a class of Gaussian approximation functions is used for the numerical solution of the

volume integral equations of thermo- and electro-statics of inhomogeneous media. The idea to use these

functions for the solution of a wide class of integral equations of mathematical physics belongs to V.
Maz�ya. The theory of approximation by Gaussian functions was developed in the works of Maz�ya [3,4]

and Maz�ya and Shmidt [5], the multiresolution analysis based on Gaussian functions was proposed in

Maz�ya and Shmidt [6]. These functions were used for the solution of the integral equations of static and

dynamic elasticity and electromagnetic diffraction problems in [7–9].

The use of the Gaussian approximating functions for the numerical solution of the problems under

consideration has the following main advantage. The action of the integral operators of the problems in

hand on such functions may be presented in a simple analytical form. As a result, the time for the cal-

culation of the matrix of the linear system obtained after the discretization of the problem, is essentially
reduced in comparison with the methods where conventional approximating functions are used. One should

note that the main drawback of using the Gaussian functions for approximation of fields inside a compact

region is that everyone of such functions will have a non-compact support. As a result, the main error of

this approximation appears in the close vicinity of the border of the region where the fields are calculated.

To improve the approximation near the borders, the so-called Edge Gaussian functions are introduced in

this work. They are equal to zero outside the region occupied by the inclusion. It is shown that the action of

the integral operators of the thermo- and electro-static problems on the Edge Gaussian functions is a

combination of a finite number of standard functions. The latter may be simply tabulated, kept in the
computer memory, and used for the solution of a wide class of the problems under consideration.

The present article is structured as follows.

The volume integral equations of thermo- and electro-statics and the properties of their solutions are

considered in Section 2. Section 3 deals with some classes of analytical solutions of these equations. The

case of a medium with a spherically symmetric inclusion subjected to a constant external field is considered

here. Section 4 discusses the main properties of the approximations using the Gaussian functions and the

Edge Gaussian functions. Section 5 presents the solution of the volume integral equations of thermo- and

electro-statics in 2D-case using the Gaussian approximating functions. It is shown there, that if the pure
Gaussian functions are used for the approximation of the solution, the elements of the matrix of the dis-

cretized problem obtained by the collocation method will have simple analytical forms. However, if the 2D-

Edge Gaussian functions are used for the approximation, the components of the matrix of the discretized

problem turn out to be combinations of two standard one-dimensional integrals that depend on three non-

dimensional parameters. For small values of the parameters these integrals are tabulated and kept in the

computer memory. Asymptotic expressions of these integrals for large values of parameters have forms of

simple elementary functions. Examples of the numerical solutions of 2D-problems for layered inclusions

and for inclusions with continuous property varying along the radius are presented in the same section. The
numerical solutions are compared with the exact solutions of these problems.

In Section 6, the method is extended to the 3D-case. The action of the integral operator of the 3D-

problems on the Gaussian and Edge Gaussian functions are obtained here. Similar to the 2D-case, the

elements of the matrix of the discretized problem have simple analytical forms if the Gaussian functions are

used for approximation. For the Edge Gaussian functions, such elements are combinations on some
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standard integrals that depend on non-dimensional parameters. These integrals may be tabulated for small

values of these parameters and will have simple asymptotic expressions for their large values. The numerical

solutions of 3D-problems for spherically layered inhomogeneous inclusions are obtained and compared
with the exact solutions of these problems in this section.

The final conclusions and the discussion of the area of application of the method are presented in

Section 7.

The proposed method of the solution of the electro- and thermo-static problems for spherically layered

inclusions is described in Appendix A.
2. The volume integral equations of thermo- and electro-statics for a homogeneous medium with an isolated
inclusion

Let us consider an infinite homogeneous medium with the tensor of dielectric permittivity C0 containing

an inhomogeneous inclusion with the dielectric permittivity CðxÞ. The inclusion occupies region V with the

characteristic function V ðxÞ: V ðxÞ ¼ 1 if x 2 V , V ðxÞ ¼ 0 if x 62 V . Here, x is a point of the medium with the

Cartesian coordinates ðx1; x2; x3Þ. If an external electric field E0ðxÞ is applied to the medium, the electric field

EðxÞ in the medium including the inclusion, satisfies the following integral equation [1]:

EiðxÞ þ
Z
V
Kijðx� x0ÞC1jkðx0ÞEkðx0Þdx0 ¼ E0iðxÞ; ð2:1Þ

where C1ðxÞ ¼ CðxÞ � C0,

KijðxÞ ¼ �oiojGðxÞ; oi ¼
o

oxi
: ð2:2Þ

Here GðxÞ is the Green function of the homogeneous medium with the dielectric permittivity C0. GðxÞ is the
diminishing at infinity solution of the following equation:

oiC0ijojGðxÞ ¼ �dðxÞ; ð2:3Þ

where dðxÞ is Dirac�s delta-function. Summation with respect to repeating indexes is implied here. The

electric displacement field ZðxÞ in the medium is defined as ZðxÞ ¼ ½C0 þ C1ðxÞV ðxÞ� � EðxÞ and satisfies the

equation similar to Eq. (2.1)

ZiðxÞ þ
Z
V
Sijðx� x0ÞB1jkðx0ÞZkðx0Þdx0 ¼ Z0iðxÞ: ð2:4Þ

Here, B1ðxÞ ¼ BðxÞ � B0, BðxÞ ¼ C�1ðxÞ, B0 ¼ C�1
0 , Z0ðxÞ ¼ C0 � E0ðxÞ, and the dot represents the scalar

product of vectors and tensors,

SijðxÞ ¼ C0ijdðxÞ � C0ikKklðxÞC0lj: ð2:5Þ

Note that Eq. (2.4) is a consequence of Eq. (2.1) and vice versa.

In the case of thermo-static problems, vector EðxÞ has another physical meaning. It is the gradient of the
temperature field T ðxÞ ðEiðxÞ ¼ �oiT ðxÞÞ, ZðxÞ ¼ CðxÞ � EðxÞ is the heat flux, and CðxÞ is the tensor of the

coefficients of thermo-conductivity. But the equations for these quantities will have the same forms (2.1)

and (2.4).

The integral operators with the kernels KðxÞ and SðxÞ in Eqs. (2.1) and (2.4) are pseudo-differential

operators with the following symbols (Fourier transforms of the functions KðxÞ and SðxÞ)
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eKKijðkÞ ¼
kikj

klC0lmkl
; eSSijðkÞ ¼ C0ij � C0il

eKKlmðkÞC0mj: ð2:6Þ

These symbols are homogeneous functions of the order zero with respect to the vector parameter k of the

Fourier transform. The action of these operators on a smooth function f ðxÞ with a finite support is defined

as follows (see [10,11]):

ðKf ÞðxÞ ¼
Z

Kðx� x0Þf ðx0Þdx0 ¼ af ðxÞ þ v:p:

Z
Kðx� x0Þf ðx0Þdx0; ð2:7Þ
ðSf ÞðxÞ ¼
Z

Sðx� x0Þf ðx0Þdx0 ¼ sf ðxÞ þ v:p:

Z
Sðx� x0Þf ðx0Þdx0: ð2:8Þ

Here v:p:
R
. . . dx is the Cauchy principal value of the integral. Constants a and s have the forms [11]

a ¼ 1

mesðX1Þ

Z
X1

~KKðkÞdk; s ¼ 1

mesðX1Þ

Z
X1

~SSðkÞdk; ð2:9Þ

where X1 is the surface of the unit sphere in k-space of the Fourier transforms, mesðX1Þ is the area of this
sphere.

If f ðxÞ is a smooth function with a non-compact support that tends to zero faster than any negative

power of jxj (class S), the action of the operator K and S on such a function may be presented in the

following forms:

ðKf ÞðxÞ ¼
Z

Kðx� x0Þf ðx0Þdx0 ¼ 1

ð2pÞd
Z eKKðkÞeff ðkÞ expð�ik � xÞdk; ð2:10Þ
ðSf ÞðxÞ ¼
Z

Sðx� x0Þf ðx0Þdx0 ¼ 1

ð2pÞd
Z eSSðkÞeff ðkÞ expð�ik � xÞdk; ð2:11Þ

where d is the space dimension. Importantly, the right-hand sides of these equations exist as ordinary

integrals.

It should be noted that Eqs. (2.1) and (2.4) are in fact the equations for the fields EðxÞ and ZðxÞ inside the
region V occupied by the inclusion. The fields in the matrix medium may be reconstructed from Eqs. (2.1)
and (2.4), if the fields inside the region V are known. Mikhlin [10] discussed in detail the conditions for the

existence and uniqueness of the solutions of Eqs. (2.1) and (2.4). In short, the unique solutions of these

equations exist if the determinants of the main homogeneous part of the symbols of the operators in the

left-hand sides of these equations are not degenerated inside V . The latter is true, if CðxÞ 6¼ 0;1 inside V . If
CðxÞ ¼ 0 (C1 ¼ �C0), the homogeneous equation (2.1) has a class of non-trivial solutions. Similarly, if

CðxÞ ! 1 (i.e., B1 ¼ �B0), the homogeneous equation (2.4) will have non-trivial solutions. As a result, the

numerical solutions of the Eqs. (2.1) and (2.4) for very small or very large CðxÞ turn to be ill-posed

problems.
The solutions of Eqs. (2.1) and (2.4) should jump on the border X of region V . Similarly, EðxÞ should

jump on the surfaces were the function CðxÞ has discontinuities inside V . The jump of the function EðxÞ on
X satisfies the following equation [11]:

EþðxÞ � E�ðxÞ ¼ eKKðnÞ � C1ðxÞ � E�ðxÞ; x 2 X; ð2:12Þ

where EþðxÞ is the limit value of the field EðxÞ when x ! X and x is inside the region V , E�ðxÞ is the same
limit of EðxÞ when x ! X from outside V , n is the external normal to X at point x. Function eKKðnÞ is defined
in Eq. (2.6).
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3. Some analytical solutions of the integral equation (2.1)

In the case of a homogeneous ellipsoidal inclusion and a polynomial external field E0ðxÞ, the solution of
Eqs. (2.1) and (2.4) may be found in a closed analytical form. According to the polynomial conservativity

theorem, a polynomial external field induces a polynomial polarization field inside any ellipsoidal inclusion.

The method of constructing this field is discussed in [11].

Another class of analytical solutions may be constructed for a spherically symmetric inclusion subjected

to a constant external field E0 [12]. Let us consider an isotropic medium with a spherical and isotropic

inclusion centered at the origin of the Cartesian coordinate system. The dielectric properties of the inclusion

depend only on the distance from the origin CijðxÞ ¼ cðjxjÞdij. Here, dij is the Kronecker symbol. In the case

of a constant external field E0, the electric field EðxÞ in the medium and inclusion takes the form (see
Appendix A):

EiðxÞ ¼ E0i þ Aijðr; nÞE0j; r ¼ jxj; nj ¼
xj
r
; ð3:1Þ
Aijðr; nÞ ¼ ðdij þ ninjDÞaðrÞ; D ¼ r
d

dr
: ð3:2Þ

The scalar function aðrÞ satisfies some ordinary differential equation of the second order (see Appendix A).

In the case of a spherically layered inclusion, the function cðrÞ is a stepwise constant function (cðrÞ ¼ cðiÞ if
aði�1Þ < r < aðiÞ, aði�1Þ and aðiÞ are internal and external radii of the ith layer), and the function aðrÞ inside the
ith layer takes the form

aðrÞ ¼ Y ðiÞ
1 þ Y ðiÞ

2 r�d ; aði�1Þ < r < aðiÞ; i ¼ 1; 2; . . . ; ð3:3Þ

where Y ðiÞ
1 , Y ðiÞ

2 are constants and d is the dimension of the space.

The algorithms for the construction of all the constants Y ðiÞ
1 , Y ðiÞ

2 in 2D and 3D-cases are described in

Appendix A. Using these algorithms, the solutions of the problem for the inclusion with a continuous

property varying along the radius may be obtained by a stepwise constant approximation of the original

function cðrÞ. The solution of the last problem converges to the solution of the continuously varying cðrÞ
problem, when the number of the layers tends to infinity in such a way that the maximal thickness of the

layers tends to zero.
4. Gaussian approximating functions

The class of Gaussian approximating functions proposed in [3–6] will be used for the numerical solution

of Eqs. (2.1) and (2.4). Let uðxÞ be a scalar function in d-dimensional space Rd . Assuming that uðxÞ and its

first derivative are bounded, uðxÞ may be approximated by the following series:

uðxÞ � uhðxÞ ¼
X
m2Zd

umuðx� hmÞ; uðxÞ ¼ 1

ðpHÞd=2
exp

 
� jxj2

Hh2

!
: ð4:1Þ

Here m 2 Zd is a d-dimensional vector with integer components, hm are the coordinates of the nodes of this
approximation and h is the distance between the neighboring nodes, um ¼ uðhmÞ is the value of the function
uðxÞ at the node x ¼ hm, and H is a dimensionless parameter. It is demonstrated in [3–5] that the following

estimation holds:

juðxÞ � uhðxÞj6 bhkruk þ juðxÞjRðHÞ; RðHÞ ¼ Oðexpð�p2HÞÞ: ð4:2Þ
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Here kruk is the norm in the space of continuous functions, b ¼ Oð1Þ. If h is sufficiently small, the error of

the approximation (4.1) may be made negligible by the appropriate choice of the parameter H ðH ¼ Oð1ÞÞ.
The properties of this approximation were discussed in detail in [3–5].

Approximation (4.1) may be used for a wider class of functions, but the errors of the approximation may

increase if the function does not satisfy the above-mentioned conditions. One of the causes of these errors is

connected with non-compact supports of all the functions uðx� hmÞ in Eq. (4.1). This fact, strictly

speaking, does not allow to approximate the functions with a compact support by the series in Eq. (4.1).

Thus, the solutions of the integral equations (2.1) and (2.4) that should be constructed in a compact region

V , will have an inevitable error if approximation (4.1) is used. Let consider the peculiarities of the

approximation (4.1) in 1D-case for a function vðxÞ that has a finite support

vðxÞ ¼ 1þ x3; jxj6 1;
0; jxj > 1:

�
ð4:3Þ

The approximation (4.1) of this function is shown to be:

vhðxÞ ¼
1ffiffiffiffiffiffiffi
pH

p
XNþ1

i¼1

vðxðiÞÞ exp
 
� ½x� xðiÞ�2

Hh2

!
ð4:4Þ

and is presented in Figs. 1(a) and (b) for various values of the parameters H and h. The coordinates of the
nodes are chosen at points xðiÞ ¼ �1þ hði� 1Þ, i ¼ 1; 2; . . . ;N þ 1; h ¼ 2=N , where N þ 1 is the number of

nodes inside the interval ½�1; 1�. The bold solid lines in Figs. 1(a) and (b) are the function (4.3). The three

thin lines in Fig. 1(a) correspond to h ¼ 0:2 and different values of H ¼ 2; 1; and 0.3. The three thin lines in
Fig. 1(b) correspond to different values of h ¼ 0:1; 0.2; and 0.05 and for H ¼ 0:7. It is seen from this figure

that the Gaussian approximation functions satisfactorily describe vðxÞ in the middle region of the interval

½�1; 1� and near its left end ðx ¼ �1Þ, where vðxÞ tends to zero. In the neighborhood of the right end of the

interval, ðx ¼ 1Þ, where vðxÞ has a finite jump, the error of the approximation (4.4) is maximal. This error

decreases with decreasing values of h and H , but for H < 0:5, the error of the approximation in the middle

region of the interval grows dramatically (see oscillation of vhðxÞ for H ¼ 0:3 in Fig. 1(a)).

In order to improve the quality of the approximation (4.1) near the right end of the interval ½�1; 1� let us
introduce the Edge Gaussian function defined by the equation

buuðx; bÞ ¼ 1ffiffiffiffiffi
pH

p exp � x2

Hh2

� �
; x6 b;

0; x > b:

(
ð4:5Þ
Fig. 1. Approximation of the function vðxÞ ¼ ð1þ x3Þ, jxj6 1; vðxÞ ¼ 0, jxj > 1 by the Gaussian functions.
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Function

bvvhðxÞ ¼XNþ1

i¼1

vðxðiÞÞbuu signðxÞðx
�

� xðiÞÞ; bðiÞ
�
; bðiÞ ¼ 1� jxðiÞj ð4:6Þ

coincideswith function vhðxÞ inEq. (4.4) inside the interval ½�1; 1� and is equal to zero outside it.Here, bðiÞ is the
shortest distance of the node xðiÞ from the ends of the interval ½�1; 1�. Thus, the Edge Gaussian function (4.5)

allows to cut the approximation (4.4) inside the region, where the original function is not equal to zero, and

essentially improve the approximation of the considered function in the neighborhood of the right end of the

interval. (The thin lines inside the interval ½�1; 1� in Fig. 1(b) correspond to bvvhðxÞ, and bvvhðxÞ ¼ 0 if jxj > 1.)

In the 2D and 3D-cases, the Edge Gaussian functions may be introduced as follows:

buuðx; bÞ ¼ 1

ðpHÞd=2
exp � jxj2

Hh2

� �
; xd 6 b;

0; xd > b;

(
ð4:7Þ

where jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

k¼1 x
2
k

q
and d is the dimension of the space. The proper use of the Edge Gaussian functions

necessitates the introduction of a local Cartesian coordinate system at every node xðiÞ. The axis xd of this

system should coincide with the direction of the shortest line connecting the ith node to the border X of the
region V , where the approximating function is not equal to zero. bðiÞ is the length of this line. An arbitrary

function uðxÞ may be approximated by the Edge Gaussian functions in the form:

uðxÞ �
XM
i¼1

uðxðiÞÞbuu ðx
�

� xðiÞÞ1; . . . ; ðx� xðiÞÞd ; bðiÞ
�
; ð4:8Þ

where ðx� xðiÞÞj ðj ¼ 1; . . . ; dÞ are the coordinates of vector x� xðiÞ in the local basis of the ith node. The

detailed formulations of these approximations in the 2D and 3D-cases are presented in Sections 5 and 6,

below.
5. Numerical solution of Eq. (2.1) in the 2D-case

5.1. Gaussian approximating functions

Let an infinite isotropic 2D-medium with the dielectric permittivity c0 contain an inclusion in the region
V with the dielectric permittivity cðxÞ. The solution of the integral equation (2.1) inside this region could be

found in the form similar to (4.1) as:

EðxÞ �
XM
l¼1

EðlÞuðx� xðlÞÞ;

EðlÞ ¼ EðxðlÞÞ; uðxÞ ¼ 1

pH
exp

 
� jxj2

Hh2

!
; xðlÞ 2 V :

ð5:1Þ

Here xðlÞ is a set of nodes homogeneously distributed in the region V . After substituting approximation (5.1)
into Eq. (2.1) one obtains the following equation:

XM
l¼1

EðlÞuðx� xðlÞÞ þ
XM
l¼1

Iðx� xðlÞÞcðlÞ1 � EðlÞ ¼ EðxÞ; cðmÞ1 ¼ cðxðmÞÞ � c0; ð5:2Þ
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IijðxÞ ¼
Z

Kijðx� x0Þuðx0Þdx0 ¼ 1

4p3Hc0

Z
kikj
jkj2

exp

 
� Hh2jkj2

4
� ik � x

!
dk: ð5:3Þ

Eqs. (2.10) and (2.6) are used for the definition of the operator K in Eq. (2.1). After calculating the

integrals in the right-hand side of Eq. (5.3), the tensor IðxÞ is obtained in the form:

IijðxÞ ¼
1

Hc0
U1ðjfjÞdij
�

þ U2ðjfjÞninj
�
; fi ¼

2xi
h
ffiffiffiffi
H

p ; ni ¼
fi
jfj ; ð5:4Þ
U1ðjfjÞ ¼
2

pjfj2
1

"
� exp

 
� jfj2

4

!#
; ð5:5Þ
U2ðjfjÞ ¼
4

pjfj2
1

 "
þ jfj2

4

!
exp

 
� jfj2

4

!
� 1

#
: ð5:6Þ

The system of equations for the unknowns EðmÞ ¼ EðxðmÞÞ follows from Eqs. (5.1) and (2.1), if the latter is

to be satisfied in all the nodes xðmÞ (collocation method). As a result, the system of linear algebraic equations

for the components of the vectors EðmÞ is obtained in the formXM
l¼1

EðlÞ
1 uðxðmÞ � xðlÞÞ þ

XM
l¼1

AðmlÞ
11 EðlÞ

1

h
þ AðmlÞ

12 EðlÞ
2

i
¼ EðmÞ

01 ; ð5:7Þ
XM
l¼1

EðlÞ
1 uðxðmÞ � xðlÞÞ þ

XM
l¼1

AðmlÞ
21 EðlÞ

1

h
þ AðmlÞ

22 EðlÞ
2

i
¼ EðmÞ

02 : ð5:8Þ

Here EðlÞ
0i ¼ E0iðxðlÞÞ; i ¼ 1; 2; the elements of the matrixes A11; A12, and A22 are as follows:

AðmlÞ
11 ¼ 2cðlÞ1

Hc0
U1 jfðmÞ
�264 � fðlÞj

�
þ U2 jfðmÞ

�
� fðlÞj

� fðmÞ1 � fðlÞ1

� �2
jfðmÞ � fðlÞj2

375; ð5:9Þ
AðmlÞ
12 ¼ 2cðlÞ1

Hc0
U2 jfðmÞ
�

� fðlÞj
� fðmÞ1 � fðlÞ1

� �
fðmÞ2 � fðlÞ2

� �
jfðmÞ � fðlÞj2

¼ AðmlÞ
21 ; ð5:10Þ
AðmlÞ
22 ¼ 2cðlÞ1

Hc0
U1 jfðmÞ
�264 � fðlÞj

�
þ U2 jfðmÞ

�
� fðlÞj

� fðmÞ2 � fðlÞ2

� �2
jfðmÞ � fðlÞj2

375: ð5:11Þ

The system (5.4) may be written in the canonical form as:

BX ¼ F ; ð5:12Þ

where the vector of unknowns X of the dimension 2M is defined by the equation

X ðpÞ ¼ EðpÞ
1 ; 16 p6M ;

Eðp�MÞ
2 ; M < p6 2M

(
ð5:13Þ
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and vector F has the form

F ðpÞ ¼ EðpÞ
01 ; 16 p6M ;

Eðp�MÞ
02 ; M < p6 2M :

(
ð5:14Þ

The B in Eq. (5.12) is the following block-matrix of the dimension ð2M � 2MÞ

B ¼ Wþ A11 A12

A12 Wþ A22

				 				; ð5:15Þ
W ¼ WðmlÞ		 		; WðmlÞ ¼ uðxðmÞ � xðlÞÞ:

As it is seen from Eqs. (5.5), (5.6), (5.9)–(5.11), the elements of the matrix B have simple analytical forms.

They are expected to be constructed much faster than the elements of the corresponding matrix when
conventional approximating functions are used for the solution of the problem under consideration.

Construction of the elements of B in the latter case involves numerical calculations of integrals over

subareas.

The results of the calculation of the electric field in the medium with a circular inhomogeneous inclusion

of a unit radius are presented in Fig. 2. The medium has dielectric permittivity c0 ¼ 1 and the dielectric

properties of the inclusion changes along the radius according to a parabolic law: c1ðrÞ ¼ cðrÞ � c0 ¼ 10r2.
The components of the constant external field applied to the medium are E01 ¼ 1;E02 ¼ 0. The bold solid

lines in Fig. 2 are the exact solutions of the problem obtained by the method described in Appendix A. The
thin lines are the numerical solutions constructed for a square node grid inside the circle jxj6 1 with the step

h between the neighboring nodes. The graphs in Fig. 2(a) correspond to H ¼ 0:7 and h ¼ 0:2 ðM ¼ 81Þ,
h ¼ 0:1 ðM ¼ 317Þ, and h ¼ 0:05 ðM ¼ 1257Þ. The graphs in Fig. 2(b) correspond to H ¼ 2 and the same

values of h. The left parts of these graphs are the dependences E1ð0; x2Þ on x2 ðx2 P 0Þ, the right parts are the
dependences E1ðx1; 0Þ on x1 ðx1 P 0Þ. It is seen in these graphs that numerical solutions converge to the

exact one with grid refinement. Again as it was pointed out in Section 4, the main error of the numerical

solutions concentrates in the neighborhood of the border of the inclusion because of a non-finite support of

the assumed Gaussian approximating functions.
Fig. 2. Electric field E1ðx1; 0Þ and E1ð0; x2Þ inside the circular inclusion of unit radius with a parabolic distribution of dielectric per-

mittivity along the radius ðcðrÞ ¼ 1þ 10r2), a constant electric field (E0 ¼ e1Þ is applied along x1-axis. The thin lines are the numerical

solutions using the Gaussian approximating functions, the bold lines are the exact solution.
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5.2. Edge Gaussian functions

To improve the solution near the border of the region V , let us introduce 2D-Edge Gaussian functions

defined similarly to functions buuðx; aÞ in Eq. (4.7):

buuðx; bÞ ¼ buuðx1; x2; bÞ ¼ 1
pH exp � x2

1
þx2

2

Hh2

� �
; x2 6 b;

0; x2 > b:

(
ð5:16Þ

If these functions are used for the approximation of the electric field EðxÞ inside region V , one has to define

a local Cartesian basis ðeðiÞ1 ; e
ðiÞ
2 Þ at every ith node, and calculate the shortest distance bðiÞ of this node from

the border X of the region V . Unit vector e
ðiÞ
2 of this basis has the direction of the outside normal to X at

point xðiÞ0 2 X, and therefore, xðiÞ0 is the point of the border with the shortest distance bðiÞ from the node xðiÞ.
The global coordinates of all the nodes, the orientation of their individual local bases and the corre-

sponding distances bðiÞ are the necessary initial data for the numerical solution in this case.

If point x has coordinates ðx� xðiÞÞ1; ðx� xðiÞÞ2 in the local basis of the ith node, the electric field E in this
point may be approximated as follows:

EðxÞ �
XM
i¼1

E
ðiÞ
1 e

ðiÞ
1

�
þ E

ðiÞ
2 e

ðiÞ
2

�buu ðx
�

� xðiÞÞ1; ðx� xðiÞÞ2; bðiÞ
�
: ð5:17Þ

Here E
ðiÞ
1 ;E

ðiÞ
2 are the components of the electric field in the local basis of the ith node.

The result of the action of the operator K on the function buuðx1; x2; bÞ in Eq. (5.16) may be obtained from

Eq. (2.10), taking into account that the Fourier transform of buuðx1; x2; bÞ has the following form:

ebuubuuðk1; k2; bÞ ¼
h2

2
expð�j2Þf0ðj2; aÞ; f0ðj; aÞ ¼ 1þ Erf

a
2

�
� ij2

�
; ji ¼

1

2

ffiffiffiffi
H

p
hki;

j2 ¼ j2
1 þ j2

1; a ¼ 2ffiffiffiffi
H

p
h
b; i ¼

ffiffiffiffiffiffiffi
�1

p
: ð5:18Þ

Here ErfðzÞ ¼ 2ffiffi
p

p
R z
0
expð�t2Þdt is the error-function.

After calculation of the integrals in Eq. (2.10), the following result is obtained

IðxÞ ¼
Z

Kðx� x0Þûuðx0; bÞdx0

¼ 1

c0H
J11ðf; aÞe1½ � e1 þ J12ðf; aÞðe1 � e2 þ e1 � e2Þ þ J22ðf; aÞe1 � e2�: ð5:19Þ

Here ðe1; e2Þ is the fixed Cartesian basis, f ¼ f1e1 þ f2e2, fi ¼ 2

h
ffiffiffi
H

p yi. Functions Jklðf; aÞ have forms of the

following integrals:

J11ðf; aÞ ¼
1

2p

Z 1

0

2ffiffiffi
p

p exp


�
� f21

4
� k2

�
� F1ðk; jf1jÞ


Re f0ðk; aÞ expð½ � ikf2Þ�dk; ð5:20Þ
J12ðf; aÞ ¼
1

2p

Z 1

0

F2ðk; jf1jÞIm f0ðk; aÞ expð½ � ikf2Þ�dk; ð5:21Þ
J22ðf; aÞ ¼
1

p
exp



� f2

4

�
P ða� f2Þ � J11ðf; aÞ; ð5:22Þ



S.K. Kanaun, S. Babaii Kochekseraii / Journal of Computational Physics 192 (2003) 471–493 481
where f0ðk; aÞ is defined in Eq. (5.18), functions F1, F2, and P in these equations are:

F1ðk; tÞ ¼ k e�ktErfc k
�h

� t
2

�
þ ektErfc k

�
þ t
2

�i
; ð5:23Þ
F2ðk; tÞ ¼ k e�ktErfc k
�h

� t
2

�
� ektErfc k

�
þ t
2

�i
; ð5:24Þ
ErfcðzÞ ¼ 1� ErfðzÞ; ð5:25Þ
P ðtÞ ¼ 1; tP 0;
0; t < 0:

�
ð5:26Þ

Integrals (5.20) and (5.21) may be calculated numerically and tabulated for small values of the

parameters f1; f2; a. For large values of jfj (jfj > 10Þ these integrals have the following asymptotic forms:

J11ðf; aÞ �
1

pf2
1



� 2f21

f2

�
1
h

þ Erf
a
2

� �i
; ð5:27Þ
J12ðf; aÞ � � 2f1f2
pf4

1
h

þ Erf
a
2

� �i
; ð5:28Þ
J22ðf; aÞ �
1

pf2
1



� 2f22

f2

�
1
h

þ Erf
a
2

� �i
: ð5:29Þ

Let us introduce the global Cartesian basis ðg1; g2Þ. The transformation from the local basis e
ðiÞ
1 ; e

ðiÞ
2 of the

ith node to its global basis may be presented in the following form:

e
ðiÞ
1

e
ðiÞ
2

					
					 ¼ cosðbðiÞÞ sinðbðiÞÞ

� sinðbðiÞÞ cosðbðiÞÞ

				 				 g1
g2

				 				; ð5:30Þ

where bðiÞ is the angle between vector g2 and e
ðiÞ
2 .

In the global basis g1; g2, the electric field EðxÞ in Eq. (5.17) is presented in the form:

EðxÞ �
XM
i¼1

EðiÞ
1 g1

�
þ EðiÞ

2 g2

�buu ðx
�

� xðiÞÞ1; ðx� xðiÞÞ2; bðiÞ
�
; ð5:31Þ

where EðiÞ
1 ;EðiÞ

2 are the components of the electric field in the ith node in the global basis, and

ðx� xðiÞÞ1; ðx� xðiÞÞ2 are the coordinates of the vector x� xðiÞ in the ith local basis.

ðx� xðiÞÞ1 ¼ ðx1 � xðiÞ1 Þ cosðbðiÞÞ þ ðx2 � xðiÞ2 Þ sinðbðiÞÞ; ð5:32Þ
ðx� xðiÞÞ2 ¼ �ðx2 � xðiÞ2 Þ sinðbðiÞÞ þ ðx2 � xðiÞ2 Þ cosðbðiÞÞ: ð5:33Þ

Here x1; x2 and xðiÞ1 ; xðiÞ2 are the Cartesian coordinates of the point x and of the ith node in the global basis

g1; g2, respectively.
The final linear algebraic system for the unknowns EðiÞ

1 ;EðiÞ
2 in Eq. (5.31) takes the forms (5.12)–(5.15),

where elements of the matrixes AðmlÞ
11 , AðmlÞ

12 , and AðmlÞ
22 are defined as:
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AðmlÞ
11 ¼ cðlÞ1

c0H
J ðmlÞ
11 cos2ðbðiÞÞ

h
� J ðmlÞ

12 sinð2bðiÞÞ þ J ðmlÞ
22 sin2ðbðiÞÞ

i
; ð5:34Þ
AðmlÞ
12 ¼ cðlÞ1

c0H
J ðmlÞ
12 cosð2bðiÞÞ

�
þ 1

2
J ðmlÞ
11

�
� J ðmlÞ

22

�
sinð2bðiÞÞ


; ð5:35Þ
AðmlÞ
22 ¼ cðlÞ1

c0H
J ðmlÞ
11 sin2ðbðiÞÞ

h
þ J ðmlÞ

12 sinð2bðiÞÞ þ J ðmlÞ
22 cos2ðbðiÞÞ

i
: ð5:36Þ

Here J ðmlÞ
rs ¼ JrsðfðmÞ � fðlÞ; aðlÞÞ, functions Jrsðf; aÞ are defined in Eqs. (5.20)–(5.29), and fðmÞ � fðlÞ is

dimensionless vector of the mth node in the local basis of the lth node.

The results of the numerical solutions of the problem for the inclusion with the parabolic property
variation, with the help of the Edge Gaussian functions are presented in Figs. 3 and 4. Again, the bold solid

lines are the exact solutions of the problem, the thin lines correspond to h ¼ 0:2; 0.1; and 0.05. Fig. 3(a)

corresponds to H ¼ 0:7, Fig. 3(b) to H ¼ 2. The results for the same calculations are presented in Fig. 4(a)

for h ¼ 0:1 and H ¼ 0:7 and 2, and in Fig. 4(b) for h ¼ 0:05 and the same values of H .
Fig. 3. The same graphs as in Fig. 2. The thin lines are the numerical solutions using the Edge Gaussian approximating functions.

Fig. 4. The same graphs as in Fig. 3. The influence of the parameter H on the numerical solutions.



Fig. 5. Electric field E1ðx1; 0Þ and E1ð0; x2Þ inside the circular layered inclusion of a unit radius, a constant electric field (E0 ¼ e1) is

applied along x1-axis. Thin lines are the numerical solutions using the Gaussian approximating functions, the bold line is the exact

solution.

Fig. 6. The same graphs as in Fig. 5. The thin lines are the numerical solutions using the Edge Gaussian approximating functions.
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The distributions of the electric field inside a layered inclusion are presented in Figs. 5 and 6. In this case,

the dielectric permittivity cðrÞ of the medium and the inclusion are defined by the equations

cðrÞ ¼
10; 06 r6 0:5;
1; 0:5 < r6 1;
3; r > 1:

8<: ð5:37Þ

Jumps in the fieldEðxÞ are not only expected on the exterior borders of the inclusion, but also on the interior
border between the layers at r ¼ 0:5. The solid lines in Figs. 5 and 6 are the exact solutions of the problem, the
thin lines correspond to h ¼ 0:2; 0.1; and 0.05. The graphs in Fig. 5 are the numerical solutions obtained using

the Gaussian functions (H ¼ 0:7 in Fig. 5(a), and H ¼ 2 in Fig. 5(b)). The graphs in Fig. 6 are the numerical

solutions with the Edge Gaussian approximating functions using the same parameters as above.
6. Numerical solution of Eq. (2.1) in the 3D-case

6.1. Gaussian approximating functions in the 3D-case

In the 3D-case, the basic Gaussian approximating function and its Fourier transform take the forms:
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uðxÞ ¼ 1

ðpHÞ3=2
exp



� f2

4

�
; euuðkÞ ¼ h3 exp

�
� j2

�
; fi ¼

2

h
ffiffiffiffi
H

p xi;

ji ¼
h
ffiffiffiffi
H

p

2
ki; f2 ¼ fifi; j2 ¼ jiji:

ð6:1Þ

The action of the operator K on this function is defined by the equation:

IðxÞ ¼
Z

Kðx� x0Þuðx0Þdx0 ¼ 1

c0H 3=2
W1ðjfjÞU½ þW2ðjfjÞn� n�; ð6:2Þ

where U is the two-rank unit tensor, ni ¼ fi=jfj, functions W1ðjfjÞ; W2ðjfjÞ have the following forms:

W1ðjfjÞ ¼
2

pjfj3
Erf

jfj
2


 ��
� jfjffiffiffi

p
p exp



� f2

4

�
; ð6:3Þ
W2ðjfjÞ ¼ � 2

pjfj3
3Erf

jfj
2


 ��
� jfjffiffiffi

p
p 3



þ jfj

2

�
exp



� f2

4

�
: ð6:4Þ

In the fixed Cartesian basis e1; e2; e3 tensor IðxÞ may be also presented in the form:

IðxÞ ¼ 1

c0H 3=2
IijðfÞei � ej; ð6:5Þ
I11ðfÞ ¼ W1ðjfjÞ þW2ðjfjÞ
f21
f2
; I22ðfÞ ¼ W1ðjfjÞ þW2ðjfjÞ

f22
f2
; ð6:6Þ
I33ðfÞ ¼ W1ðjfjÞ þW2ðjfjÞ
f23
f2
; I12ðfÞ ¼ I21ðfÞ ¼ W2ðjfjÞ

f1f2
f2

; ð6:7Þ
I13ðfÞ ¼ I31ðfÞ ¼ W2ðjfjÞ
f1f3
f2

; I23ðfÞ ¼ I32ðfÞ ¼ W2ðjfjÞ
f2f3
f2

: ð6:8Þ

Approximating the electric field EðxÞ inside the inclusion in the form:

EðxÞ �
XM
m¼1

EðmÞuðx� xðmÞÞ ð6:9Þ

and using the collocation method will result the following linear system for the components of the vectors

EðiÞ ¼ EðxðmÞÞ – the values of the electric field in the nodes xðmÞ ðm ¼ 1; 2; . . . ;MÞ:

BX ¼ F : ð6:10Þ

Here the matrix-column of unknowns X of the dimension 3M has the form:

X ðlÞ ¼
EðlÞ
1 ; l6M ;

Eðl�MÞ
2 ; M < l6 2M ;

Eðl�2MÞ
; 2M < l6 3M :

8><>: ð6:11Þ

3
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The right-hand side of Eq. (6.10) is defined by the components of the applied field E0ðxÞ

F ðlÞ ¼
EðlÞ
01 ; l6M ;

Eðl�MÞ
02 ; M < l6 2M ;

Eðl�2MÞ
03 ; 2M < l6 3M ;

8><>: ð6:12Þ

where EðlÞ
0i ¼ E0iðxðlÞÞ.

Matrix B in Eq. (6.10) is the block-matrix of dimension 3M � 3M , composed of sub-matrices Ars of

dimension M �M

B ¼
Wþ A11 A12 A13

A12 Wþ A22 A23

A13 A23 Wþ A33

						
						 ð6:13Þ

and the elements of the matrices W and Ars have the forms:

WðmlÞ ¼ u xðmÞ
�

� xðlÞ
�
; AðmlÞ

rs ¼ cðlÞ1

c0H 3=2
Irs fðmÞ
�

� fðlÞ
�
: ð6:14Þ

Here, functions uðxÞ and IrsðfÞ are defined in Eqs. (6.1) and (6.6)–(6.8).

6.2. The Edge Gaussian approximating functions in the 3D-case

In the 3D-case, the basic Edge Gaussian function is defined by the following equations:

buuðx; bÞ ¼ buuðx1; x2; x3; bÞ ¼ 1

ðpHÞ3=2
exp � x2

1
þx2

2
þx2

3

Hh2

� �
; x3 6 b;

0; x3 > b:

(
ð6:15Þ

The Fourier transform of this function has the form:

ebuubuuðk; bÞ ¼ h3

2
expð�j2Þ 1

h
þ Erf

a
2

�
� ij3

�i
; ji ¼

h
ffiffiffiffi
H

p

2
ki; j2 ¼ jiji; a ¼ 2

h
ffiffiffiffi
H

p b: ð6:16Þ

The action of the operator K on the 3D-Edge Gaussian function is presented in the form:

Iðx; bÞ ¼
Z

Kðx� x0Þbuuðx0; bÞdx0
¼ 1

c0H 3=2
Jhðf; aÞh½ þ Jeeðf; aÞe� eþ Je3ðf; aÞ eð � e3 þ e3 � eÞ þ J33ðf; aÞe3 � e3�: ð6:17Þ

Here h ¼ e1 � e1 þ e2 � e2; e1; e2; e3 are the Cartesian basis in 3D-space,

fi ¼
2

h
ffiffiffiffi
H

p xi; e ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

q f1e1ð þ f2e2Þ: ð6:18Þ

Functions Jhðf; aÞ; Jeeðf; aÞ, Je3ðf; aÞ, and J33ðf; aÞ are the following integrals:

Jhðf; aÞ ¼
2

p�ff

Z 1

0

F1ð�ff; jÞRe exp
��
� if3j� j2

�
f0ðj; aÞ

�
dj; ð6:19Þ
Jeeðf; aÞ ¼ � 2

p

Z 1

0

F2ð�ff; jÞRe exp
��
� if3j� j2

�
f0ðj; aÞ

�
dj; ð6:20Þ
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Je3ðf; aÞ ¼
2

p

Z 1

0

F1ð�ff; jÞjIm exp
��
� if3j� j2

�
f0ðj; aÞ

�
dj; ð6:21Þ
J33ðf; aÞ ¼
1

p
exp



� f2

4

�
P ða� f3Þ �

2

p

Z 1

0

F0ð�ff; jÞIm exp
��
� if3j� j2

�
f0ðj; aÞ

�
dj: ð6:22Þ

Here �ff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

q
, functions f0ðj; aÞ and PðtÞ are defined in Eqs. (5.18) and (5.26). Functions F0; F1; F2 are

the following integrals:

F0ðf;jÞ ¼
j2

p

Z 1

0

J0ðftÞ
j2 þ t2

expð�t2Þdt; ð6:23Þ
F1ðf;jÞ ¼
1

p

Z 1

0

J1ðftÞ
j2 þ t2

expð�t2Þt2 dt; ð6:24Þ
F2ðf;jÞ ¼
1

p

Z 1

0

J2ðftÞ
j2 þ t2

expð�t2Þt3 dt: ð6:25Þ

For small values of the parameter jfj integrals Jhðf; aÞ; Jeeðf; aÞ; Je3ðf; aÞ, J33ðf; aÞ may be calculated

numerically, tabulated and kept in the computer memory. For large values of jfj (i.e., jfj > 10) the fol-

lowing asymptotic formulas hold

Jhðf; aÞ �
1

pjfj3
1
h

þ Erf
a
2

� �i
; Jeeðf; aÞ � � 3f

2

pjfj5
1
h

þ Erf
a
2

� �i
; ð6:26Þ
Je3ðf; aÞ � � 3ff3
pjfj5

1
h

þ Erf
a
2

� �i
; J33ðf; aÞ � � f

2 � 2f23
pjfj5

1
h

þ Erf
a
2

� �i
: ð6:27Þ

In the Cartesian basis e1; e2; e3 the tensor IðxÞ in Eq. (6.17) is presented in the form:

Iðx; aÞ ¼ 1

c0H 3=2
Kijðx; aÞei � ej; ð6:28Þ
K11ðx; aÞ ¼ Jhðf; aÞ þ Jeeðf; aÞ
f21

f
2
; K22ðx; aÞ ¼ Jhðf; aÞ þ Jeeðf; aÞ

f22

f
2
; ð6:29Þ
K12ðx; aÞ ¼ K21ðx; aÞ ¼ Jeeðf; aÞ
f1f2

f
2
; K13ðx; aÞ ¼ K31ðx; aÞ ¼ Je3ðf; aÞ

f1
f
; ð6:30Þ
K23ðx; aÞ ¼ K32ðx; aÞ ¼ Je3ðf; aÞ
f2
f
; K33ðx; aÞ ¼ J33ðf; aÞ: ð6:31Þ

For the use of the Edge Gaussian functions, the shortest distance bðiÞ from the ith node and the border X
of the region V as well as the orientation of the local basis at the ith node should be defined. The direction

of the vector e
ðiÞ
3 of the local basis should coincide with the normal nðiÞ to the surface X at point xðiÞ0 2 X that

is on the line along the shortest distance from the ith node to that border.



S.K. Kanaun, S. Babaii Kochekseraii / Journal of Computational Physics 192 (2003) 471–493 487
Let us introduce a global Cartesian basis ðg1; g2; g3Þ and a global spherical coordinate system (h;u; rÞ
with the same origins. The polar axis of the spherical system is directed along vector g3, and u is the angle

between the vector g1 and the projection of the vector x on the plane ðg1; g2Þ. Let us move the vector nðiÞ

normal to the surface X at point xðiÞ0 , into the origin of the global spherical coordinate system using parallel

transfer, and let the spherical coordinates of the moved vector be ðhðiÞ;uðiÞ; 1Þ. Local Cartesian basis

ðeðiÞ1 ; e
ðiÞ
2 ; e

ðiÞ
3 Þ at the ith node is constructed by parallel transferring the basis (eh; eu; erÞ of the global spherical

system at point ðhðiÞ;uðiÞ; 1Þ to the ith node xðiÞ:

e
ðiÞ
1 ¼ ehðhðiÞ;uðiÞ; 1Þ; e

ðiÞ
2 ¼ euðhðiÞ;uðiÞ; 1Þ; e

ðiÞ
3 ¼ erðhðiÞ;uðiÞ; 1Þ ¼ nðiÞ: ð6:32Þ

The basis vectors of the local and global Cartesian systems are related by the equations

e
ðiÞ
l ¼

X3
k¼1

QðiÞ
lk gk; gl ¼

X3
k¼1

Q
ðiÞ
lk e

ðiÞ
k ; ð6:33Þ

where QðiÞ
lk and Q

ðiÞ
lk are the components of the matrix QðiÞ and of the matrix Q

ðiÞ
transposed with respect to

QðiÞ. The matrix QðiÞ has the form

QðiÞ ¼
cos hðiÞ cosuðiÞ cos hðiÞ sinuðiÞ � sin hðiÞ

� sinuðiÞ cosuðiÞ 0

sin hðiÞ cosuðiÞ sin hðiÞ sinuðiÞ cos hðiÞ

						
						: ð6:34Þ

The electric field in the inclusion is approximated by the equation:

EðxÞ �
XM
i¼1

EðiÞûu ðx
�

� xðiÞÞ1; ðx� xðiÞÞ2; ðx� xðiÞÞ3; bðiÞ
�
: ð6:35Þ

Here ðx� xðiÞÞj ðj ¼ 1; 2; 3Þ are the coordinates of vector x� xðiÞ in the local basis of the ith node.
After application of the collocation method to the solution of the original integral equation the linear

system for the components of the vectors EðiÞ ¼ EðxðiÞÞ in the global basis g1; g2; g3 will take the following

form:XM
j¼1

EðjÞ
1 WðijÞ þ

XM
j¼1

cðjÞ1

c0H 3=2
bKKðijÞ

11 E
ðjÞ
1

h
þ bKKðijÞ

12 E
ðjÞ
2 þ bKKðijÞ

13 E
ðjÞ
3

i
¼ EðiÞ

01 ; ð6:36Þ
XM
j¼1

EðiÞ
2 WðijÞ þ

XM
j¼1

cðjÞ1

c0H 3=2
bKKðijÞ

12 E
ðjÞ
1

h
þ bKKðijÞ

22 E
ðjÞ
2 þ bKKðijÞ

23 E
ðjÞ
3

i
¼ EðiÞ

02 ; ð6:37Þ
XM
j¼1

EðiÞ
3 WðijÞ þ

XM
j¼1

cðjÞ1

c0H 3=2
bKKðijÞ

13 E
ðjÞ
1

h
þ bKKðijÞ

23 E
ðjÞ
2 þ bKKðijÞ

33 E
ðjÞ
3

i
¼ EðiÞ

03 : ð6:38Þ

Here,

bKKðijÞ
mn ¼

X3
k;l¼1

QðjÞ
mkQ

ðjÞ
nl Kkl fðiÞ

�
� fðjÞ; aðjÞ

�
; m; n ¼ 1; 2; 3 ð6:39Þ

and functions Kklðf; aÞ are defined in Eqs. (6.29)–(6.31).
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The linear system defined by Eqs. (6.36)–(6.38) may be rewritten in the canonical form:

BX ¼ F ; ð6:40Þ
where the block-square matrix B of the dimension ð3M � 3MÞ has the form

B ¼
Wþ A11 A12 A13

A12 Wþ A22 A23

A13 A23 Wþ A33

						
						; ð6:41Þ
Amn ¼
cðjÞ1

c0H 3=2
bKKðijÞ

mn ; i; j6M ; m; n ¼ 1; 2; 3 ð6:42Þ

and the components of the matrix W are defined in Eq. (6.14). The components of vectors X and F are:

X ðiÞ ¼
EðiÞ
1 ; i6M ;

Eði�MÞ
2 ; M < i6 2M ;

Eði�2MÞ
2 ; 2M < i6 3M ;

8><>: ð6:43Þ
F ðiÞ ¼
E01ðxðiÞÞ; i6M ;
E02ðxði�MÞÞ; M < i6 2M ;

Eði�2MÞ
02 ; 2M < i6 3M :

8<: ð6:44Þ

The results of the calculation of the electric field inside a spherical inclusion with the parabolic distri-

bution of the properties (cðrÞ ¼ 1þ 10r2, r6 1; cðrÞ ¼ 1, r > 1) are presented in Figs. 7(a) and (b). The

external field is constant and has components E1 ¼ 1, E2 ¼ E3 ¼ 0. The dependences E1ðx1; 0; 0Þ for x1 P 0
are on the right-hand sides of these figures, and the dependences E1ð0; x2; 0Þ for x2 P 0 are on their left-hand

sides. All calculations were carried out using a cubic grid with step h. The results of the calculations for

values H ¼ 0:7; 1.5; and h ¼ 0:1; 0.2 are presented in these figures by thin solid lines, the bold lines are exact

distributions of the electric field obtained by the method described in Appendix A.

The distribution of the electric field inside a spherical layered inclusion (cðrÞ ¼ 10, 06 r6 0:5; cðrÞ ¼ 1,

0:5 < r6 1; cðrÞ ¼ 3, r > 1) is presented in Figs. 8(a) and (b). The external field has components E1 ¼ 1,

E2 ¼ E3 ¼ 0 in the global basis. The dependences E1ðx1; 0; 0Þ for x1 P 0 are on the right-hand sides of these

figures, and E1ð0; x2; 0Þ for x2 P 0 are on their left-hand sides. The results of the calculations for H ¼ 0:7; 1;
Fig. 7. Electric field E1ðx1; 0; 0Þ and E1ð0; x2; 0Þ inside the spherical inclusion of a unit radius with the parabolic distribution of di-

electric permittivity along the radius ðcðrÞ ¼ 1þ 10r2Þ, a constant electric field (E0 ¼ e1) is applied along x1-axis. The thin lines are the

numerical solutions using the Edge Gaussian approximating functions, the bold lines are the exact solutions.



Fig. 8. Electric field E1ðx1; 0; 0Þ and E1ð0; x2; 0Þ inside the spherical layered inclusion of a unit radius, a constant electric field (E0 ¼ e1)

is applied along x1-axis. Thin lines are numerical solutions using the Edge Gaussian approximating functions, the bold lines are the

exact solutions.
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1.25 and h ¼ 0:1; 0.2 are presented in these figures by thin solid lines, the bold lines are the exact distri-
bution of the electric field.
7. Conclusion

The Gaussian approximating functions are an efficient tool for the solution of the volume integral

equations of the thermo- and electro-static problems for the medium with inhomogeneous inclusions. The

use of these functions has the advantage of fast construction of the matrix of the linear algebraic system
obtained after the discretization of the problem. If the Edge Gaussian functions are used, it is assumed that

the basic functions J11ðf; aÞ, J12ðf; aÞ in Eqs. (5.20)–(5.22) for the 2D-case or functions Jhðf; bÞ, Jeeðf; aÞ,
Je3ðf; aÞ and J33ðf; aÞ for the 3D-case are previously tabulated and kept in the computer memory.

However, the numerical accuracy strongly depends on the step h of the node grid used in the calculations

as well as on the type of the approximating functions. The accuracy near the border of the inclusion es-

sentially increases if the Edge Gaussian functions are used (comparing Figs. 3 and 4, and Figs. 6 and 7). For

the parabolic distribution of properties inside a circular inclusion of a unit radius, the numerical solutions

at a grid resolution h ¼ 0:05 and based on the Edge Gaussian functions practically coincides with the
corresponding exact solutions (see Figs. 4 and 6). The influence of parameter H in the approximations (5.1)

and (5.17) on the accuracy of the numerical solution is more pronounced at relatively large h ðh > 0:1Þ. At

small h ðh < 0:05Þ and 0:5 < H < 2 the numerical solution is not sensitive to H . On the other hand, outside

this range of H , the convergence of the method with respect to h is worse.

If the properties inside the inclusion have a step change (jump), the fields near this jump should be

calculated with sufficient accuracy and, as demonstrated in Fig. 6, relatively small values of the parameter h
have to be chosen. On the other hand, if some integral characteristics of the fields are the aim of the

calculations (e.g., the mean values of fields over the inclusion), the overall accuracy of the solution will be
less sensitive to the resolution h, resulting in smaller number of equations and faster calculation times.

The general behavior in the 3D-case is similar to the 2D-case. Signifying achievement of the same ac-

curacy as in the 2D-case (i.e., h ¼ 0:05), will require multiple fold increase in the number of necessary grid

nodes. For instance, for the spherical inclusion of a unit radius and h ¼ 0:05, the number of nodes is

M¼ 32,960, and the matrix B of the discretized system has (3M � 3MÞ elements. It should be noted that B is

a dense matrix with maximal terms near the main diagonal. It consists of six sub-matrices of dimensions

ðM �MÞ in a block matrix fashion. Although it marginally allows reduction of the volume of the memory

that is necessary to keep matrix B, nevertheless, for the solution 3D-problems, one has to use powerful
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computers with sufficient accessible storage memory. For the problems considered in this study the con-

ditional number of the matrix B turned to be about 10, and LU-decomposition algorithm was extensively

used for the solution of the final linear algebraic systems of the discretized problems.
Note that all calculations carried out in this study were only based on homogeneous grids of nodes. But

non-homogeneous grids may be also used in the framework of the method. The theoretical background of

the approximation by the Gaussian functions and non-homogeneous node grids was developed in [14].

The method developed in this work for the solution of the thermo- and electro-static problems of

composite media may be applied to a wide class of the problems of mathematical physics that are reduced

to volume or superficial integral equations. In particular, the problems of elasticity and elasto-plasticity, the

problems of elastic and electro magnetic wave diffraction on inclusions may be successfully solved with the

help of this class of the approximation functions.
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Appendix A

The equation for the tensor AðxÞ in the presentation (3.1) of the solution in the case spherically sym-

metric inclusion follows from Eq. (2.1) in the form:

AðxÞ þ ðK � c1AÞðxÞ ¼ �ðKc1ÞðxÞ: ðA:1Þ
The action of the operator K on a piecewise smooth function f with a compact support may be presented in

the following form [13]:

ðKf Þðr; nÞ ¼ 1

2pi

Z sþi1

s�i1
r�sðKsf �Þðs; nÞds: ðA:2Þ

Here r ¼ jxj; n ¼ x=r, f �ðs; nÞ is the Mellin transform of function f ðr; nÞ in respect with argument r,

f �ðs; nÞ ¼
Z 1

0

f ðr; nÞrs�1 dr; f ðr; nÞ ¼ 1

2pi

Z sþi1

s�i1
r�sf �ðs; nÞds: ðA:3Þ

Operator Ks in Eq. (A.3) is defined by the following equation [13]:

ðKsf �Þðs; nÞ ¼ exp iðpd=2Þð Þ
ð2pÞd

Cðd � sÞCðsÞ
Z
X1

ð�n �mÞ�s
dm

Z
X1

eKKðmÞf �ðs; lÞðm � lÞs�d
dm: ðA:4Þ

Here d is the dimension of space, CðsÞ is Euler�s gamma function, X1 is the surface of a unit sphere in

d-space, n;m; l are vectors on X1. Tensor eKKðmÞ in this equation is defined in Eq. (2.6).

After applying the Mellin transform with respect to variable r to both sides of Eq. (A.1) we go to the

following equation

A�ðs; nÞ þ Ks � ðc1AÞ�ð Þðs; nÞ ¼ �ðKsc�1Þðs; nÞ: ðA:5Þ

Direct calculations using Eq. (A.4) show that the right-hand side of this equation has the form:

ðKsc�1Þðs; nÞ ¼
c�1ðsÞ
c0

Tðs; nÞ; Tðs; nÞ ¼ 1

d � s
Uð � sn� nÞ; ðA:6Þ

where U is the unit two rank tensor.
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It turns out that Eq. (A.5) may be satisfied by the following tensor:

A�ðs; nÞ ¼ a�ðsÞðd � sÞTðs; nÞ: ðA:7Þ

After substituting Eq. (A.7) into Eq. (A.5) and taking into account that

ðKs � TÞðs; nÞ ¼
1

c0
Tðs; nÞ ðA:8Þ

we obtain an equation which both sides are proportional to the tensor Tðs; nÞ. From the equivalence of the

coefficients in front of this tensor in the right- and left-hand sides of this equation follows the equation for

the Mellin transform of the function a�ðsÞ:

sðd � sÞa�ðsÞ þ s
c0
sðc1aÞ�ðsÞ þ

ðs� d þ 1Þ
c0

ðc1DaÞ�ðsÞ ¼ � c�1ðsÞ
c0

; D ¼ r
d

dr
: ðA:9Þ

Applying to this equation the inverse Mellin transform and taking into account that multiplier s corre-

sponds to the operator D in the r-space we obtain the ordinary differential equation for the function aðrÞ.
Function aðrÞ should satisfy the following conditions in the origin and at infinity:

að0Þ < 1; aðrÞ ! 0 if r ! 1: ðA:10Þ

If function aðrÞ is constructed, tensor Aðr; nÞ takes the form:

Aðr; nÞ ¼ ðUþ n� nDÞaðrÞ ðA:11Þ

that follows from Eqs. (A.6) and (A.7).

The differential equation for aðrÞ is dramatically simplified in the case of spherically layered inclusions.

In this case c1ðrÞ is a step-wise constant function

c1ðrÞ ¼ cðiÞ1 ¼ const; aði�1Þ < r < aðiÞ; ðA:12Þ

and the differential equation for aðrÞ inside every layer takes the form:

Dðd þ DÞa ¼ 0; aði�1Þ < r < aðiÞ: ðA:13Þ

The general solution of this equation is:

aðrÞ ¼ Y ðiÞ
1 þ Y ðiÞ

2 r�d : ðA:14Þ

Additional analysis shows that on the borders of the layers the following conditions hold

½a�i ¼ 0; ½cDa�i ¼ � 1
�

þ aðaðiÞÞ
�
½c�i: ðA:15Þ

Here ½f �i ¼ f ðaðiÞ þ 0Þ � f ðaðiÞ � 0Þ; f ðaðiÞ � 0Þ ¼ lime!0 f ðaðiÞ � eÞ; e > 0.

The mentioned properties of the solution in the case of layered inclusion allow to propose the following

algorithm of the construction of all the constants Y ðiÞ
1 ; Y ðiÞ

2 ði ¼ 1; 2; . . . ;NÞ in Eq. (A.14). Let us introduce
two vectors inside every ith layer:

X ðiÞðrÞ ¼ X ðiÞ
1 ðrÞ

X ðiÞ
2 ðrÞ

					
					; Y ðiÞ ¼ Y ðiÞ

1

Y ðiÞ
2

					
					; ðA:16Þ
X ðiÞðrÞ ¼ aðrÞ; X ðiÞðrÞ ¼ DaðrÞ; aði�1Þ < r < aðiÞ:
1 1
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The connection between these two vectors has the form that follows from Eq. (A.14)

X ðiÞðrÞ ¼ T ðrÞY ðiÞ; aði�1Þ < r < aðiÞ; ðA:17Þ
T ðrÞ ¼ 1 r�d

0 �dr�d

				 				:
Thus, one can defined the operation of the transition of the solution X ðiÞ through the ith layer

X ðiÞðaðiÞÞ ¼ RðiÞX ðiÞðaði�1ÞÞ; RðiÞ ¼ T ðaðiÞÞT ðaði�1ÞÞ: ðA:18Þ

The law of transition of the solution through the border r ¼ aðiÞ between two layers follows from Eq.

(A.15) in the form

X ðiþ1ÞðaðiÞÞ ¼ F ðiÞ þ CðiÞX ðiÞðaðiÞÞ; ðA:19Þ
F ðiÞ ¼ 0
cðiÞ�cðiþ1Þ

cðiþ1Þ

				 				; CðiÞ ¼ 1 0
cðiÞ�cðiþ1Þ

cðiþ1Þ
cðiÞ

cðiþ1Þ

				 				: ðA:20Þ

These equations allow us to define the solution in the ith layer via the solution in the first layer

X ðiþ1ÞðaðiÞÞ ¼ gðiÞ þ GðiÞX ð1Þðað1ÞÞ; ðA:21Þ
gðiÞ ¼ F ðiÞ þ
Xi�1

j¼1

Ggði; jÞF ðjÞ; Ggði; jÞ ¼ QðiÞQði�1Þ � � �Qði�jþ1Þ; ðA:22Þ
QðiÞ ¼ CðiÞRðiÞ; GðiÞ ¼ QðiÞQði�1Þ � � �Qð1Þ; Rð1Þ ¼ U ¼ dij
		 		:

Now, from the boundary conditions (A.10) we obtain

X ð1Þ
1 ¼ Y ð1Þ

1 ; X ð1Þ
2 ¼ 0; Y ð1Þ

2 ¼ 0;
X ðNþ1Þ
1 ¼ Y ðNþ1Þ

2 r�d ; X ðNþ1Þ
2 ¼ �dY ðNþ1Þ

2 r�d ; Y ðNþ1Þ
1 ¼ 0: ðA:23Þ

From Eqs. (A.23) and (A.21) we have

gðNÞ
1 þ GðNÞ

11 Y ð1Þ
1 ¼ Y ðNþ1Þ

2 ðaðNÞÞ�d
; gðNÞ

2 þ GðNÞ
21 Y ð1Þ

1 ¼ �dY ðNþ1Þ
2 ðaðNÞÞ�d

: ðA:24Þ

Excluding Y ðNþ1Þ
2 from these two equations we obtain the constant Y ð1Þ

1 in the form

Y ð1Þ
1 ¼ � dgðNÞ

1 þ gðNÞ
2

dGðNÞ
11 þ GðNÞ

21

: ðA:25Þ

After calculation of Y ð1Þ
1 one can fined all the vectors Y ðiÞ from the equations

Y ðiþ1Þ ¼ T�1ðaðiÞÞX ðiþ1ÞðaðiÞÞ; X ðiþ1ÞðaðiÞÞ ¼ gðiÞ þ GðiÞY ð1Þ; Y ð1Þ ¼ fY ð1Þ
1 ; 0g ðA:26Þ

that follow from Eqs. (A.17). Thus, the problem is converted to the multiplications of the matrixes and

vectors of the order ð2� 2Þ and 2.

Using these algorithms the solutions of the problem for the inclusion with a continuous property

changing along the radius may be obtained by step wise constant approximation of the original function
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cðrÞ. For the solution of the problem with parabolic distribution of the properties along the radius of the

inclusion considered in Section 5 and 6, the following parameters of the layers were chosen aðiÞ ¼ i
N,

i ¼ 1; 2; . . . ;N ; c1ðrÞ ¼ 10ðaðiÞÞ2, aði�1Þ < r < aðiÞ. If N > 100 the solution does not change practically when
N increases. In the calculations in Sections 5 and 6, N ¼ 1000 was taken.
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